
Week 2
The 80x86 Microprocessor

Architecture

2

Brief History of the 80x86 Family

• Evolution from 8080/8085 to 8086
– In 1987, Intel introduced a 16-bit microprocessor called the 8086
– It was a major improvement over the previous generation 8080/8085

microprocessors
• 1 Mbyte memory (20 address lines) vs 8080/8085’s capability of 64 Kbytes
• 8080/8085 was an 8 bit system, meaning that the data larger than 8 bits should

be broken into 8-bit pieces to be processed by the CPU; in contrast 8086 is a 16
bit microprocessor

• 8086 is pipelined vs nonpipelined 8080/8085; in a system with pipelining the
data and address busses are busy transferring data while the CPU is processing
information

• Evolution from 8086 to 8088
– 8086 is a microprocessor with a 16-bit data bus internally and externally
– Internal because all registers are 16 bits wide
– External because the data bus was 16 bits to transfer data in and out of the

CPU
– There was a resistance in using the 16 bit external data bus since at that

time peripherals were designed around 8-bit microprocessors
– Intel then came out with the 8088 version with 8-bit data bus

3

Brief History - Continued

• Success of 8088
– IBM picked up the 8088 as their microprocessor of choice in designing

the IBM PC
– All specification of the hardware and software of the PC are made

public by IBM and Microsoft (in contrast with Apple computers)
• Other microprocessors: 80386, 80386, 80486

– Intel introduced 80286 in 1982
– 16 bit internal and external data buses
– 24 address lines (16 Mbyte main memory)
– Virtual memory: a way of fooling the microprocessor into thinking that it

has access to almost unlimited amount of memory by swapping data
between disk storage and RAM

– Real mode vs protected mode
– Intel unveiled the 80386 (sometimes called the 80386DX) in 1985;

internally and externally a 32 bit microprocessor with a 32 bit address
bus (4 Gbyte physical memory)

– Numeric data processing chips were made available: 8087, 80287,
80387 etc.

4

Evolution of Intel’s microprocessors

5

Virtual 8086 Mode

• Real Mode
– Only one program can be run one time
– All of the protection and memory management functions are turned off
– Memory space is limited to 1MB

• Virtual 8086 Mode
– The 386 hands each real mode program its own 1MB chunk of memory
– Multiple 8086 programs to be run simultaneously but protected from

each other (multiple MSDOS prompts)
– Due to time sharing, the response becomes much slower as each new

program is launched
– The 386 can be operated in Protected Mode and Virtual 8086 mode at

the same time.
– Because each 8086 task is assigned the lowest privilege level, access

to programs or data in other segments is not allowed thus protecting
each task.

– We’ll be using the virtual 8086 mode in the lab experiments on PCs that
do have either Pentiums or 486s.

The 80286 and above - Modes of Operation

6

•Real Mode
•The address space is limited to 1MB using address lines A0-19;
the high address lines are inactive

•The segmented memory addressing mechanism of the 8086 is retained
with each segment limited to 64KB

•Two new features are available to the programmer
–Access to the 32 bit registers

–Addition of two new segments F and G

•Protected Mode
–Difference is in the new addressing mechanism and protection levels
–Each memory segment may range from a single byte to 4GB
–The addresses stored in the segment registers are now interpreted as
pointers into a descriptor table
–Each segment’s entry in this table is eight bytes long and identifies the
base address of the segment, the segment size, and access rights
–In 8088/8086 any program can access the core of the OS hence crash the
system. Access Rights are added in descriptor tables.

Brey 59

7

Virtual Memory

• 286 onward supported Virtual Memory Management and Protection™
• Unlimited amount of main memory assumed
• Two methods are used:

– Segmentation
– Paging

• Both techniques involve swapping blocks of user memory with hard disk
space as necessary

– If the program needs to access a block of memory that is indicated to be stored in
the disk, the OS searches for an available memory block (typically using a least
recently used algorithm) and swaps that block with the desired data on the hard
drive

– Memory swapping is invisible to the user
– Segmentation: the block size is variable ranging up to 4GB
– Paging: Block sizes are always 4 KB at a time.

• A final protected mode feature is the ability to assign a privilege level to
individual tasks (programs). Tasks of lower privilege level cannot access
programs or data with a higher privilege level. The OS can run multiple
programs each protected from each other.

Mazidi 648

8

The 8086 and 8088

• The 8086 microprocessor represents the foundation upon which all
the 80x86 family of processors have been built

• Intel has made the commitment that as new generations of
microprocessors are developed, each will maintain software
compatibility with this first generation part.
– For example, a program designed to run on an Intel 386

microprocessor, which also runs on a Pentium, is upward compatible.
• Processor model

– BIU (Bus Interface Unit) provides hardware functions including
generation of the memory and I/O addresses for the transfer of data
between itself and the outside world

– EU (Execution Unit) receives program instruction codes and data from
the BIU executes these instructions and stores the results in the general
registers.

– EU has no connection to the system busses; it receives and outputs all
its data through the BIU.

9

Execution and Bus Interface Units

10

Fetch and Execute Cycle

• Fetch and execute cycles overlap
– BIU outputs the contents of the IP onto the address bus
– Register IP is incremented by one or more than one for the next

instruction fetch
– Once inside the BIU, the instruction is passed to the queue; this queue

is a first-in-first-out register sometimes likened to a pipeline
– Assuming that the queue is initially empty the EU immediately draws

this instruction from the queue and begins execution
– While the EU is executing this instruction, the BIU proceeds to fetch a

new instruction.
• BIU will fill the queue with several new instructions before the EU is ready to

draw its next instruction
– The cycle continues with the BIU filling the queue with instructions and

the EU fetching and executing these instructions

11

Pipelined Architecture

• Three conditions that will cause the EU to enter a wait mode
– when the instruction requires access to a memory location not in the

queue
– when the instruction to be executed is a jump instruction; the instruction

queue should be flushed out (known as branch penalty too much
jumping around reduces the efficiency of the program)

– during the execution of slow instructions
• for example the instruction AAM (ASCII Adjust for Multiplication) requires 83

clock cycles to complete for an 8086

• 8086 vs 8088
– BIU data bus width 8 bits for 8088, BIU data bus width 16 bits for 8086
– 8088 instruction queue is four bytes instead of six
– 8088 is found to be 30% slower than 8086

• WHY
– Long instructions provide more time for the BIU to fill the queue

12

Nonpipelined vs pipelined architecture

Time

Fetch Execute Fetch Execute Fetch Execute

Non-pipelined architecture

BIU
F F F F F F Read

Data

Wait E E E Er

Er: a request for data not in the queue

Wait E

FdFdFd

EU

FF

E Ej EWait

Pipelined architecture

Ej: jump instruction occurs Fd: Discarded

13

Registers of the 8086/80286 by Category
Category Bits Register Names

General 16 AX,BX,CX,DX

8 AH,AL,BH,BL,CH,CL,DH,DL

Pointer 16 SP (Stack Pointer), Base Pointer (BP)

Index 16 SI (Source Index), DI (Destination Index)

Segment 16 CS(Code Segment)
DS (Data Segment)
SS (Stack Segment)
ES (Extra Segment)

Instruction 16 IP (Instruction Pointer)

Flag 16 FR (Flag Register)

14

General Purpose Registers

• Data Registers are normally used for storing temporary
results that will be acted upon by subsequent instructions
• Each of the registers is 16 bits wide (AX, BX, CX, DX)
• General purpose registers can be accessed as either 16 or 8
bits e.g., AH: upper half of AX, AL: lower half of AX

AX (Accumulator)

AH AL

BX (Base Register)

BH BL

CX (Used as a counter)

CH CL

DX (Used to point to data in I/O operations)

DH DL

H L15 8 7 0

15

Data Registers

Register Operations

AX Word multiply, word divide, word I/O

AL Byte multiply, byte divide, byte I/O, decimal arithmetic

AH Byte multiply, byte divide

BX Store address information

CX String operations, loops

CL Variable shift and rotate

DX Word multiply, word divide, indirect I/O

16

Pointer and Index Registers

SP Stack Pointer

BP Base Pointer

SI Source Index

DI Destination Index

IP Instruction Pointer

The registers in this group are all 16 bits wide
Low and high bytes are not accessible
These registers are used as memory pointers

• Example: MOV AH, [SI]
Move the byte stored in memory location
whose address is contained in register SI to register AH

IP is not under direct control of the programmer

17

Computer Programming
• Machine Language vs Assembly Language

– Machine language or object code is the only code a computer can
execute but it is nearly impossible for a human to work with

– E4 27 88 C3 E4 27 00 D8 E6 30 F4 the object code for adding two
numbers input from the keyboard

• When programming a microprocessor, programmers often use
assembly language
– This involves 3-5 letter abbreviations for the instruction codes

(mnemonics) rather than the binary or hex object codes

Source code

18

Edit, Assemble, Test, and Debug Cycle
• Using an editor, the source code of the program is

created. This means selecting the appropriate instruction
mnemonics to accomplish the task

• A compiler program which examines the source code file
generated by the editor and determines the object code for
each instruction in the program, is then run. In assembly
language programming, this is called an assembler
(MASM (Chapter 2 of the textbook, DEBUG: Appendix A
of the textbook, etc.,)

• The object code produced by the computer is loaded into
the target computer’s memory and is then run.

• Debugging: locating and fixing the source of error
• High-level programming Languages

– Basic, Pascal, C, C++

19

MOV Instruction

• MOV destination,source
– 8 bit moves

• MOV CL,55h
• MOV DL,CL
• MOV BH,CL
• Etc.

– 16 bit moves
• MOV CX,468Fh
• MOV AX,CX
• MOV BP,DI
• Etc.

20

MOV Instruction

• Data can be moved among all registers but data cannot be
moved directly into the segment registers (CS,DS,ES,SS).
– To load as such, first load a value into a non-segment register and then

move it to the segment register

MOV AX,2345h
MOV DS,AX

• Moving a value that is too large into a register will cause an
error

MOV BL,7F2h ; illegal
MOV AX,2FE456h ; illegal

• If a value less than than FFh is moved into a 16 bit register. The
rest of the bits are assumed to be all zeros.

MOV BX,5 ; BX = 0005 with BH = 00 and BL = 05

21

MOV Instruction

• MOV AX,58FCH
• MOV DX,6678H
• MOV SI,924BH
• MOV BP,2459H
• MOV DS,2341H
• MOV CX,8876H
• MOV CS,3F47H
• MOV BH,99H

√

x
√

√

√

√

x
√

22

ADD Instruction

• ADD destination,source
• The ADD instruction tells the CPU to add the source and destination

operands and put out the results in the destination

DESTINATION = DESTINATION + SOURCE

MOV AL,25H
MOV BL,34h
ADD AL,BL ; (AL should read 59h once the instruction is executed)

MOV DH,25H
ADD DH,34h ; (AL should read 59h once the instruction is executed)

Immediate operand

23

Origin and Definition of a Segment

• A segment is an area of memory that includes up to 64
Kbytes and begins on an address divisible by 16 (such
an address ends with an hex digit 0h or 0000b)
– 8085 could address 64Kbytes 16 address lines

• In the 8085, 64 K is for code, data, and stack
• In the 8086/88, 64 K is assigned to each category

– Code segment
– Data segment
– Stack Segment
– Extra Segment

24

Advantages of Segmented Memory

• One program can work on several different sets of data. This is done
by reloading register DS to a new value.

• Programs that reference logical addresses can be loaded and run
anywhere in the memory: relocatable

• Segmented memory introduces extra complexity in both hardware in
that memory addresses require two registers.

• They also require complexity in software in that programs are limited
to the segment size

• Programs greater than 64 KB can be run on 8086 but the software
needed is more complex as it must switch to a new segment.

• Protection among segments is provided.

25

Segment Registers

26

Logical and Physical Addresses

• Addresses within a segment can range from address 0 to address
FFFFh. This corresponds to the 64Kbyte length of the segment
called an offset

• An address within a segment logical address
• Ex. Logical address 0005h in the code segment actually

corresponds to B3FF0h + 5 = B3FF5h.

OFFSET VALUE

15 0

SEGMENT REGISTER 0h
0519

ADDER

20 BIT PHYSICAL ADDRESS

Example 1:
Segment base value: 1234h
Offset: 0022h

12340h
0022h

12362h is the physical 20 bit address

Two different logical addresses may
correspond to the same physical
address.
D470h in ES 2D90h in SS
ES:D470h SS:2D90h

+

27

Example
•If DS=7FA2H and the offset is 438EH

a) Calculate the physical address

FFFF

b) calculate the lower range

c) Calculate the upper range of the data segment

d) Show the logical Address

7FA20 + 438E = 83DAE

83DAE

7FA20 + FFFF = 8FA1F

8FA1F

7FA20 + 0000 = 7FA20

7FA20
7FA2:438E

mazidi

28

Example
Question:

Assume DS=578C. To access a Data in 67F66 what should we do?

578C0

678BF

DS=578C capability

67F66

change
DS

To any value
between

57F7h - 67F6h

29

Code Segment

• To execute a program, the 8086 fetches the instructions
(opcodes and operands) from the code segment

• The logical address is in the form CS:IP

• Example: If CS = 24F6h and IP = 634Ah, show
• The logical address
• The offset address
and calculate
• The physical address
• The lower range
• The upper range

30

Logical Address vs Physical Address in the CS

CS:IP Machine
Language

Mnemonics

1132:0100 B057 MOV AL,57h
1132:0102 B686 MOV DH,86h
1132:0104 B272 MOV DL,72h
1132:0106 89D1 MOV CX,DX
1132:0108 88C7 MOV BH,AL
1132:010A B39F MOV BL,9F
1132:010C B420 MOV AH,20h
1132:010E 01D0 ADD AX,DX
1132:0110 01D9 ADD CX,BX
1132:0112 05351F ADD AX, 1F35h

• Show how the code resides physically in the memory

31

Data Segment

• Assume that a program is written to add 5 bytes of data
25h,12h,15h,1Fh, and 2Bh.

• One way to do it
MOV AL,00h
ADD AL, 25h
ADD AL, 12h
ADD AL,15h
ADD AL,1Fh
ADD AL,2Bh

• Data and code are mixed in the instructions here
• The problem with it is if the data changes, the code must

be searched for every place the data is included and
data retyped.

• It is a good idea then to set aside an area of memory
strictly for data

32

Data Segment

• The data is first placed in the memory locations
DS:0200 = 25h
DS:0201 = 12h
DS:0202 = 15h
DS:0203 = 1Fh
DS:0204 = 2Bh

• Then the program is written as
MOV AL,0
ADD AL,[0200] ; bracket means add the contents of DS:0200 to AL
ADD AL,[0201]
ADD AL,[0202]
ADD AL,[0203]
ADD AL,[0204]

• If the data is stored at a different offset address, say 450 h, the
program need to be rewritten

33

Data Segment

• The term pointer is used for a register holding an offset address
• Use BX as a pointer

MOV AL,0
MOV BX,0200h
ADD AL,[BX]
INC BX
ADD AL,[BX]
INC BX
ADD AL,[BX]
INC BX
ADD AL,[BX]
INC BX
ADD AL,[BX]

• If the offset address of data is to be changed, only one
instructions will need to be modified

34

16 bit Segment Register Assignments

Type of
Memory
Reference

Default
Segment

Alternate
Segment

Offset

Instruction Fetch CS none IP

Stack
Operations

SS none SP,BP

General Data DS CS,ES,SS BX, address

String Source DS CS,ES,SS SI, DI, address

String
Destination

ES None DI

Brey

35

Little Endian Convention

• Adobe Photoshop -- Big Endian
• BMP (Windows and OS/2 Bitmaps) – little Endian
• GIF -- Little Endian
• IMG (GEM Raster) -- Big Endian
• JPEG -- Big Endian

“Little Endian” means that the low-order byte of the number
is stored in memory at the lowest address, and the high-
order byte at the highest address. (The little end comes
first.)
Intel uses Little Endian Convention.
For example, a 4 byte LongInt

Byte3 | Byte2 | Byte1 |Byte0 will be arranged in memory
as follows:
Base Address+0 Byte0
Base Address+1 Byte1
Base Address+2 Byte2
Base Address+3 Byte3

36

Computer Operating Systems
• What happens when the computer is first turned on?
• MS-DOS

– A startup program in the BIOS (Basic Input Output System) is
executed

– This program in turn accesses the master boot record on the
floppy or hard disk drive

– A loader then transfers the system files IO.SYS
– IO.SYS calls MSDOS.SYS. MS-DOS.SYS is basically the kernel of the

operating system.
– After initializing, MS-DOS.SYS then calls the command interpreter

COMMAND.COM which is loaded into memory. This puts the
DOS prompt on the screen that gives the user access to DOS’s
built-in commands like DIR, COPY, VER.

37

Memory Map of a PC

Conventional
memory

Upper memory
block

The 640 K Barrier
DOS was designed to run
on the original IBM PC
8088 microprocessor,
1Mbytes of main memory

IBM divided this 1Mb
address space into specific
blocks

640 K of RAM (user
RAM)
384 K reserved for
ROM functions (control
programs for the video
system hard drive

38

MS-DOS Functions and BIOS Services

BIOS: usually stored in ROM
– tells the CPU what to do at startup
– these routines provide access to the peripheral devices of the PC,

such as the keyboard, video, printer, and disk
– To test all the devices connected to the PC and alert if error

• Access to the BIOS is done through the software interrupt
instruction Int n

• For example, the BIOS keyboard services are accessed
using the instruction INT 16h

• In addition to BIOS services, DOS also provides higher
level functions
– INT 21h
– More details later

39

More About RAM

• Memory management is one of the most important
functions of the DOS operating systems and should be
left to DOS

• Therefore, we do not assign any values for the
DS,CS,SS registers; this is the job of DOS

• It is very important to remember that
– The DS,CS, and DS values we will experiment will be different

than those used by the textbook; do not worry

40

Flag (Status) Register

• Six of the flags are status indicators reflecting properties
of the last arithmetic or logical instruction.

• For example, if register AL = 7Fh and the instruction
ADD AL,1 is executed then the following happen
– AL = 80h
– CF = 0; there is no carry out of bit 7
– PF = 0; 80h has an odd number of ones
– AF = 1; there is a carry out of bit 3 into bit 4
– ZF = 0; the result is not zero
– SF = 1; bit seven is one
– OF = 1; the sign bit has changed

• Can be used to transfer program control to a new
memory location

ADD AL,1
JNZ 0100h

X X X X OF DF IF TF SF ZF X AF X PF X CF

FlagsH FlagsL 015

41

Example

• Show how the flag register is
affected by

– MOV AX, 34F5h
– ADD AX,95EBh Aux carry

0011 0100 1111 0101
1001 0101 1110 1011

1100 1010 1110 0000

overflow

Direction flag

interrupt

sign
zero

parity

carry

42

TF, IF, and DF
• Three of the flags can be set or reset directly by the programmer

ands are used to control the operation of the microprocessor, these
are TF, IF, and DF.

• When TF (Trap Flag) is set, control is passed to special address
after each instruction is executed. Normally a program to display all
the registers and flags is stored there. Single-stepping mode.

• When IF (Interrupt Flag) is set, external interrupt requests on the
8086’s interrupt line INTR is enabled.
– For example a printer may spend several seconds printing a page of

text from its internal buffer
– When it is ready for new data, the printer control circuit drives the

8086’s INTR input line
– The processor then suspends whatever it is doing and begins running

the printer interrupt service routine (ISR)
– When the routine has finished via a IRET (interrupt return) instruction

control is transferred back to the original instruction in the main program
that was executing when the interrupt occurred

– Hardware and software interrupts
• DF (Direction Flag) is used with block move instructions (more later!!).

– DF = 1 then the block memory pointer will automatically decrement
– DF = 0, then the block memory pointer will automatically increment

43

Memory Address Space and Organization

• Word
• Double Word
• Aligned Word
• Misaligned Word

44

Even addressed and odd-addressed banks

45

Dedicated, Reserved and General Purpose Memory

System Area

TPA

Transient

Program

Area

Interrupt Vectors (Dedicated)

User Def Int. Pointers (Reserved)

FREE TPA

DOS + BIOS R/W Area

640 K

1 MB

I/O.SYS--COMMAND.COM-- MSDOS

•Some address locations have dedicated functions and should not be used as
general memory for storage of data or instructions of a program

384 K

BIOS System ROM (Dedicated)

Video RAM (128 K)

Video & H/D Controller BIOS ROM
(Dedicated)

FFFFF

9FFFF

A0000

F0000

BFFFF

0h
00000H

Brey 19
Mazidi 32

46

The Stack

• The stack is used for temporary storage of information such as data
or addresses; for instance when a call is executed the 8088
automatically pushes the current value of CS and IP onto the stack.

• Other registers can also be pushed
• Near the end of the subroutine, pop instructions can be used to pop

values back from the stack into the corresponding registers

SP

SS

SS:0000h
End of
stack

SS:SP
Top of
stack

SS:FFFEh
Bottom of

Stack

PUSH POP

47

Example for PUSH

• Given
– SS = 0105h
– SP = 0008h
– AX = 1234h
– What is the outcome of the PUSH AX instruction?

• ABOS = 01050 + FFFEh = 1104h
• ATOS = 01050 + 0008h = 1058h

• Decrement the SP by 2 and write AX into the word location 1056h.

34h

12h

SS:0006 1056h 00h 06hSPAL

AHSS:0007 1057h

NOT USEDSS:0008 1058h

48

Example for POP

• What is the outcome of the following
POP AX
POP BX

– if originally 1058h contained AABBh?

• Read into the specified register from the stack and
increment the stack pointer for each POP operation

• At the first POP
– AX = 1234h SP = 0008h

• At the second POP
– BX = AABBh SP = 000Ah

49

Addressing Modes

• When the 8088 executes an instruction, it performs the specified function
on data

• These data, called operands,
– May be a part of the instruction
– May reside in one of the internal registers of the microprocessor
– May be stored at an address in memory

• Register Addressing Mode
– MOV AX, BX
– MOV ES,AX
– MOV AL,BH

• Immediate Addressing Mode
– MOV AL,15h
– MOV AX,2550h
– MOV CX,625

50

Direct Addressing Mode

02003 FF

Example:
MOV AL,[03]

AL=?

MOV CX, [address]

BEED

51

Register Indirect Addressing Mode

MOV AX,
BX
DI
SI

BEED

52

Example for Register Indirect Addressing

• Assume that DS=1120, SI=2498 and AX=17FE show the memory
locations after the execution of:

MOV [SI],AX

DS (Shifted Left) + SI = 13698.

With little endian convention:

Low address 13698 FE

High Address 13699 17

53

Based-Relative Addressing Mode

MOV AH, [] + 1234hDS:BX
SS:BP

AX

DS

BX

1234

3AH+

54

Indexed Relative Addressing Mode
MOV AH, [] + 1234hSI

DI

Example: What is the physical address MOV [DI-8],BL if DS=200 & DI=30h ?
DS:200 shift left once 2000 + DI + -8 = 2028

55

Based-Indexed Relative Addressing Mode

• Based Relative + Indexed Relative
• We must calculate the PA (physical address)

CS
SS BX SI 8 bit displacement

PA= DS : BP + DI + 16 bit displacement
ES

MOV AH,[BP+SI+29]
or

MOV AH,[SI+29+BP]
or

MOV AH,[SI][BP]+29

The
register

order does
not matter

56

Based-Indexed Addressing Mode

MOV BX, 0600h
MOV SI, 0010h ; 4 records, 4 elements each.
MOV AL, [BX + SI + 3]

OR

MOV BX, 0600h
MOV AX, 004h ;
MOV CX,04;
MUL CX
MOV SI, AX
MOV AL, [BX + SI + 3]

57

Summary of the addressing modes
Addressing Mode Operand Default Segment

Register Reg None

Immediate Data None

Direct [offset] DS

Register Indirect [BX]
[SI]
[DI]

DS
DS
DS

Based Relative [BX]+disp
[BP]+disp

DS
SS

Indexed Relative [DI]+disp
[SI]+disp

DS
DS

Based Indexed
Relative

[BX][SI or DI]+disp
[BP][SI or DI]+disp

DS
SS

58

16 bit Segment Register Assignments

Type of
Memory
Reference

Default
Segment

Alternate
Segment

Offset

Instruction Fetch CS none IP

Stack
Operations

SS none SP,BP

General Data DS CS,ES,SS BX, address

String Source DS CS,ES,SS SI, DI, address

String
Destination

ES None DI

Brey

59

Segment override

Segment
Registers

CS DS ES SS

Offset Register IP SI,DI,BX SI,DI,BX SP,BP

Instruction Examples Override Segment Used Default Segment

MOV AX,CS:[BP] CS:BP SS:BP

MOV DX,SS:[SI] SS:SI DS:SI

MOV AX,DS:[BP] DS:BP SS:BP

MOV CX,ES:[BX]+12 ES:BX+12 DS:BX+12

MOV SS:[BX][DI]+32,AX SS:BX+DI+32 DS:BX+DI+32

60

Example for default segments

• The following registers are used as offsets. Assuming that the
default segment used to get the logical address, give the segment
register associated?

a) BP b)DI c)IP d)SI, e)SP, f) BX

• Show the contents of the related memory locations after the
execution of this instruction
MOV [BP][SI]+10,DX
if DS=2000, SS=3000,CS=1000,SI=4000,BP=7000,DX=1299 (all
hex)

SS(0)=30000
30000+4000+7000+10=3B010

61

Assembly Language

• There is a one-to-one relationship between assembly and machine
language instructions

• What is found is that a compiled machine code implementation of a
program written in a high-level language results in inefficient code
– More machine language instructions than an assembled version of an

equivalent handwritten assembly language program
• Two key benefits of assembly language programming

– It takes up less memory
– It executes much faster

62

Languages in terms of applications

• One of the most beneficial uses of assembly language programming
is real-time applications.

• Real time means the task required by the application must be
completed before any other input to the program that will alter its
operation can occur

• For example the device service routine which controls the operation
of the floppy disk drive is a good example that is usually written in
assembly language

• Assembly language not only good for controlling hardware devices
but also performing pure software operations
– searching through a large table of data for a special string of characters
– Code translation from ASCII to EBCDIC
– Table sort routines
– Mathematical routines

• Assembly language: perform real-time operations
• High-level languages: Those operations mostly not critical in time.

63

Converting Assembly Language
Instructions to Machine Code

OPCODE D W MOD REG R/M

• An instruction can be coded with 1 to 6 bytes
• Byte 1 contains three kinds of information:

– Opcode field (6 bits) specifies the operation such as add, subtract, or move
– Register Direction Bit (D bit)

• Tells the register operand in REG field in byte 2 is source or destination operand
– 1:Data flow to the REG field from R/M
– 0: Data flow from the REG field to the R/M

– Data Size Bit (W bit)
• Specifies whether the operation will be performed on 8-bit or 16-bit data

– 0: 8 bits
– 1: 16 bits

• Byte 2 has two fields:
– Mode field (MOD) – 2 bits
– Register field (REG) - 3 bits
– Register/memory field (R/M field) – 2 bits

64

Continued

• REG field is used to identify the register for the first operand

REG W = 0 W = 1
000 AL AX

001 CL CX

010 DL DX

011 BL BX

100 AH SP

101 CH BP

110 DH SI

111 BH DI

65

Continued

• 2-bit MOD field and 3-bit R/M field together specify the second
operand

66

Examples

• MOV BL,AL
• Opcode for MOV = 100010
• We’ll encode AL so

– D = 0 (AL source operand)
• W bit = 0 (8-bits)
• MOD = 11 (register mode)
• REG = 000 (code for AL)
• R/M = 011

OPCODE D W MOD REG R/M

100010 0 0 11 000 011

MOV BL,AL => 10001000 11000011 = 88 C3h
ADD AX,[SI] => 00000011 00000100 = 03 04 h
ADD [BX][DI] + 1234h, AX => 00000001 10000001 __ __ h

=> 01 81 34 12 h

67

Software

• The sequence of commands used to tell a microcomputer what to do is
called a program

• Each command in a program is called an instruction
• 8088 understands and performs operations for 117 basic instructions
• The native language of the IBM PC is the machine language of the

8088
• A program written in machine code is referred to as machine code
• In 8088 assembly language, each of the operations is described by

alphanumeric symbols instead of just 0s or 1s.

ADD AX, BX

Opcode Source operand

Destination operand

68

Instructions

[LABEL:] MNEMONIC [OPERANDS] [; COMMENT]

Address identifier
Max 31 characters

: indicates it opcode
generating instruction

Does not generate any machine code
Instruction

Ex. START: MOV AX,BX ; copy BX into AX

69

DEBUG program instruction set (page 825 mzd)

• Debug instructions
• List of commands

– a Assemble [address] you can type in code this way
– c range address ; compare c 100 105 200
– d [range] ; Dump d 150 15A
– e address [list] ; Enter e 100
– f Fill range list F 100 500 ‘ ‘
– g Go [=address] addresses runs the program
– h Value1 Value2 ; addition and subtraction H 1A 10
– i Input port I 3F8
– r Show & change registers Appears to show the same thing as t,

but doesn't cause any code to be executed.
– t Trace either from the starting address or current location.
– u UnAssemble

70

Some examples with debug

0100 mov ax,24b6
0103 mov di, 85c2
0106 mov dx,5f93
0109 mov sp,1236
010c push ax
010d push di
010e int 3

Display the stack contents after execution.
-D 1230 123F

71

Some examples with DEBUG

• 0100 mov al,9c
• 0102 mov dh,64
• 0104 add al,dh
• 0109 int 3

trace these three commands and observe the flags

• After the code has been entered with the A command
• Use CX to store data indicating number of bytes to save.

BX is the high word.
• Use N filename.com
• Then W command to write to file.
• L loads this file.

72

Example

Copy the contents of a block of memory (16 bytes) starting at
location 20100h to another block of memory starting at 20120h

MOV AX,2000
MOV DS,AX
MOV SI, 100
MOV DI, 120
MOV CX, 10

NXTPT: MOV AH, [SI]
MOV [DI], AH
INC SI
INC DI
DEC CX
JNZ NXTPT

100-10f

120-12f

	Week 2The 80x86 Microprocessor Architecture
	Brief History of the 80x86 Family
	Brief History - Continued
	Evolution of Intel’s microprocessors
	Virtual 8086 Mode
	The 80286 and above - Modes of Operation
	Virtual Memory
	The 8086 and 8088
	Execution and Bus Interface Units
	Fetch and Execute Cycle
	Pipelined Architecture
	Nonpipelined vs pipelined architecture
	Registers of the 8086/80286 by Category
	General Purpose Registers
	Data Registers
	Pointer and Index Registers
	Computer Programming
	Edit, Assemble, Test, and Debug Cycle
	MOV Instruction
	MOV Instruction
	MOV Instruction
	ADD Instruction
	Origin and Definition of a Segment
	Advantages of Segmented Memory
	Segment Registers
	Logical and Physical Addresses
	Example
	Example
	Code Segment
	Logical Address vs Physical Address in the CS
	Data Segment
	Data Segment
	Data Segment
	16 bit Segment Register Assignments
	Little Endian Convention
	Computer Operating Systems
	Memory Map of a PC
	MS-DOS Functions and BIOS Services
	More About RAM
	Flag (Status) Register
	Example
	TF, IF, and DF
	Memory Address Space and Organization
	Even addressed and odd-addressed banks
	Dedicated, Reserved and General Purpose Memory
	The Stack
	Example for PUSH
	Example for POP
	Addressing Modes
	Direct Addressing Mode
	Register Indirect Addressing Mode
	Example for Register Indirect Addressing
	Based-Relative Addressing Mode
	Indexed Relative Addressing Mode
	Based-Indexed Relative Addressing Mode
	Based-Indexed Addressing Mode
	Summary of the addressing modes
	16 bit Segment Register Assignments
	Segment override
	Example for default segments
	Assembly Language
	Languages in terms of applications
	Converting Assembly Language Instructions to Machine Code
	Continued
	Continued
	Examples
	Software
	Instructions
	DEBUG program instruction set (page 825 mzd)
	Some examples with debug
	Some examples with DEBUG
	Example

