Week 2
The 80x86 Microprocessor
Architecture

Brief History of the 80x86 Family

Evolution from 8080/8085 to 8086
— In 1987, Intel introduced a 16-bit microprocessor called the 8086
— It was a major improvement over the previous generation 8080/8085
MICroprocessors
* 1 Mbyte memory (20 address lines) vs 8080/8085’s capability of 64 Kbytes

« 8080/8085 was an 8 bit system, meaning that the data larger than 8 bits should
be broken into 8-bit pieces to be processed by the CPU; in contrast 8086 is a 16
bit microprocessor

« 8086 is pipelined vs nonpipelined 8080/8085; in a system with pipelining the
data and address busses are busy transferring data while the CPU is processing
information

Evolution from 8086 to 8088
— 8086 is a microprocessor with a 16-bit data bus internally and externally
— Internal because all registers are 16 bits wide

— External because the data bus was 16 bits to transfer data in and out of the
CPU

— There was a resistance in using the 16 bit external data bus since at that
time peripherals were designed around 8-bit microprocessors

— Intel then came out with the 8088 version with 8-bit data bus

Brief History - Continued

e Success of 8088

IBM picked up the 8088 as their microprocessor of choice in designing
the IBM PC

All specification of the hardware and software of the PC are made
public by IBM and Microsoft (in contrast with Apple computers)

e Other microprocessors: 80386, 80386, 80486

Intel introduced 80286 in 1982
16 bit internal and external data buses
24 address lines (16 Mbyte main memory)

Virtual memory: a way of fooling the microprocessor into thinking that it
has access to almost unlimited amount of memory by swapping data
between disk storage and RAM

Real mode vs protected mode

Intel unveiled the 80386 (sometimes called the 80386DX) in 1985;
internally and externally a 32 bit microprocessor with a 32 bit address
bus (4 Gbyte physical memory)

Numeric data processing chips were made available: 8087, 80287,
80387 etc.

Evolution of Intel’s microprocessors

Bl aximum
M= Clock
Dabe of Transistors rjrllz,llll,:ll1l I-'r-:-.|:|:||-:_'.' Cin-chip Pl azcimom
Prosciossor Introsductio e I - . Cachie Sl dres=ahil
on Chip nirochctio ai _
n it Introductio Memory e Memory
'
HOEG | 97H UK (1 & MH = (LS N E
HOZ2EA | 2R 2 | 34K 27 12.5 M= 15 MM
SO3EA | BRS 275K i 20 bAH = 4 o=
S EA | 2R 2R 20 25 BAH S =K Liovwel 4 1
1
Pentitim | 953, LT 10 LT S 15K Lawal 4 G
1
Pentitimm | 905 | 4410 200 M= 15K Lawel i L=
Prio T Y
512K
Level 2
Pentivim 11 L Thd 4 266 MIH = 17K Lawel i+ OH
T
) el
Lievel 2
Pentivim 111 | R PNt | 1 .00 A0 MW= A7K Laweal i+ GH
1. 512K
Lievel 2

Virtual 8086 Mode

 Real Mode
— Only one program can be run one time
— All of the protection and memory management functions are turned off
— Memory space is limited to 1MB

* Virtual 8086 Mode

— The 386 hands each real mode program its own 1MB chunk of memory

— Multiple 8086 programs to be run simultaneously but protected from
each other (multiple MSDOS prompts)

— Due to time sharing, the response becomes much slower as each new
program is launched

— The 386 can be operated in Protected Mode and Virtual 8086 mode at
the same time.

— Because each 8086 task is assigned the lowest privilege level, access
to programs or data in other segments is not allowed thus protecting
each task.

— We'll be using the virtual 8086 mode in the lab experiments on PCs that
do have either Pentiums or 486s.

Brey

The 80286 and above - Modes of Operation

Real Mode

*The address space is limited to 1MB using address lines A0-19;
the high address lines are inactive

*The segmented memory addressing mechanism of the 8086 is retained
with each segment limited to 64KB

*Two new features are available to the programmer
—Access to the 32 bit registers

—Addition of two new segments F and G

*Protected Mode

—Difference is in the new addressing mechanism and protection levels
—Each memory segment may range from a single byte to 4GB

—The addresses stored in the segment registers are now interpreted as
pointers into a descriptor table

—Each segment’s entry in this table is eight bytes long and identifies the
base address of the segment, the segment size, and access rights

—In 8088/8086 any program can access the core of the OS hence crash the
system. Access Rights are added in descriptor tables.

(o]

Virtual Memory

e 286 onward supported Virtual Memory Management and Protection™
e Unlimited amount of main memory assumed

 Two methods are used:
— Segmentation
— Paging
* Both technigues involve swapping blocks of user memory with hard disk
space as necessary

— If the program needs to access a block of memory that is indicated to be stored in
the disk, the OS searches for an available memory block (typically using a least
recently used algorithm) and swaps that block with the desired data on the hard
drive

— Memory swapping is invisible to the user
— Segmentation: the block size is variable ranging up to 4GB
— Paging: Block sizes are always 4 KB at a time.
« A final protected mode feature is the ability to assign a privilege level to
Individual tasks (programs). Tasks of lower privilege level cannot access

programs or data with a higher privilege level. The OS can run multiple
programs each protected from each other.

Mazidi 648

The 8086 and 8088

The 8086 microprocessor represents the foundation upon which all
the 80x86 family of processors have been built

Intel has made the commitment that as new generations of
microprocessors are developed, each will maintain software
compatibility with this first generation part.

— For example, a program designed to run on an Intel 386
microprocessor, which also runs on a Pentium, is upward compatible.

Processor model

— BIU (Bus Interface Unit) provides hardware functions including
generation of the memory and 1/0O addresses for the transfer of data
between itself and the outside world

— EU (Execution Unit) receives program instruction codes and data from
the BIU executes these instructions and stores the results in the general
registers.

— EU has no connection to the system busses; it receives and outputs all
its data through the BIU.

Execution and Bus Interface Units

BUS
EXECUTION|/" INSTRUCTION
UNIT PIPELINE | INTERFACE
SYSTEM BUS)
(a)
EXECUTION UMIT (EU) i BUS INTERFACE UNMNIT (BIU)
GENERAL SEGMENT |
REGISTERS I REGISTERS
I] INSTRUCTION I
POINTER

-

OPERANDS 1

-

-

| ———

ADDRESS
GENERATION
AND BUS
CONTROL

MULTIPLEXED BUS

1

INSTRUCTION
QUEUE

ALY

FLAGS I

Fetch and Execute Cycle

Fetch and execute cycles overlap

BIU outputs the contents of the IP onto the address bus

Register IP is incremented by one or more than one for the next
instruction fetch

Once inside the BIU, the instruction is passed to the queue; this queue
IS a first-in-first-out register sometimes likened to a pipeline

Assuming that the queue is initially empty the EU immediately draws
this instruction from the queue and begins execution

While the EU is executing this instruction, the BIU proceeds to fetch a
new instruction.

« BIU will fill the queue with several new instructions before the EU is ready to
draw its next instruction

The cycle continues with the BIU filling the queue with instructions and
the EU fetching and executing these instructions

10

Pipelined Architecture

Three conditions that will cause the EU to enter a wait mode

— when the instruction requires access to a memory location not in the
queue

— when the instruction to be executed is a jump instruction; the instruction
gueue should be flushed out (known as branch penalty too much
jumping around reduces the efficiency of the program)

— during the execution of slow instructions

o for example the instruction AAM (ASCII Adjust for Multiplication) requires 83
clock cycles to complete for an 8086

8086 vs 8088

— BIU data bus width 8 bits for 8088, BIU data bus width 16 bits for 8086
— 8088 instruction queue is four bytes instead of six

— 8088 is found to be 30% slower than 8086
e WHY

— Long instructions provide more time for the BIU to fill the queue

11

Nonpipelined vs pipelined architecture

Time)
Fetch | Execute | Fetch | Execute Fetch | Execute
Non-pipelined architecture
BIU
FIFIF] Fl FIF[™ gl mlr | FlE

N NN NS

wait | E | E | E | Er | Wat |E | E | Ej

Wait

Pipelined architecture

Er: a request for data not in the queue
Ej: jump instruction occurs Fd: Discarded

12

Registers of the 8086/80286 by Category
Category Bits Register Names
General 16 AX,BX,CX,DX
8 AH,AL,BH,BL,CH,CL,DH,DL

Pointer 16 SP (Stack Pointer), Base Pointer (BP)
Index 16 Sl (Source Index), DI (Destination Index)
Segment 16 CS(Code Segment)

DS (Data Segment)

SS (Stack Segment)

ES (Extra Segment)
Instruction 16 IP (Instruction Pointer)
Flag 16 FR (Flag Reqister)

13

General Purpose Registers

15 H gl7 L 0
AX (Accumulator)
AH AL
BX (Base Register)
BH BL
CX (Used as a counter)
CH CL
DX (Used to point to data in I1/O operations)
DH DL

e Data Registers are normally used for storing temporary
results that will be acted upon by subsequent instructions

« Each of the registers is 16 bits wide (AX, BX, CX, DX)

» General purpose registers can be accessed as either 16 or 8
bits e.g., AH: upper half of AX, AL: lower half of AX

14

Data Registers

Register Operations

AX Word multiply, word divide, word 1/O

AL Byte multiply, byte divide, byte I/O, decimal arithmetic
AH Byte multiply, byte divide

BX Store address information

CX String operations, loops

CL Variable shift and rotate

DX Word multiply, word divide, indirect 1/0O

15

Pointer and Index Registers
SP Stack Pointer
BP Base Pointer
SI Source Index
DI Destination Index
P Instruction Pointer

The registers in this group are all 16 bits wide
Low and high bytes are not accessible
These registers are used as memory pointers

e Example: MOV AH, [SI]

Move the byte stored in memory location
whose address is contained in register Sl to register AH

IP Is not under direct control of the programmer

16

Computer Programming

 Machine Language vs Assembly Language

— Machine language or object code is the only code a computer can

execute but it is nearly impossible for a human to work with

— E4 27 88 C3 E4 27 00 D8 E6 30 F4 the object code for adding two

numbers input from the keyboard

 When programming a microprocessor, programmers often use

assembly language

— This involves 3-5 letter abbreviations for the instruction codes
(mnemonics) rather than the binary or hex object codes

Mnemonics
Address Hex Object Code Op-Code Operand Comment
0100 E4 27 IN AL,27H Input first number from port 27H and store in AL
0102 88 C3 MOV BL,AL Save a copy of register AL in register BL
0104 E4 | 27 IN AL27TH Input second number to AL
0106 00 | D8 ADD AL,BL Add contents of BL to AL and store the sum in AL
0107 E6 | 30 ouT 30H,AL Output AL to port 30H
0109 F4 HLT Halt the computer

Source code

17

Edit, Assemble, Test, and Debug Cycle

Using an editor, the source code of the program is
created. This means selecting the appropriate instruction
mnemonics to accomplish the task

A compiler program which examines the source code file
generated by the editor and determines the object code for
each instruction in the program, is then run. In assembly
language programming, this is called an assembler
(MASM (Chapter 2 of the textbook, DEBUG: Appendix A
of the textbook, etc.,)

The object code produced by the computer is loaded into
the target computer’'s memory and is then run.

Debugging: locating and fixing the source of error
High-level programming Languages
— Basic, Pascal, C, C++

18

MOV Instruction

e MOV destination,source

— 8 bit moves
e MOV CL,55h
« MOV DL,CL
« MOV BH,CL
 Etc.

— 16 bit moves
« MOV CX,468Fh
« MOV AX,CX
« MOV BP,DI
e Etc.

19

MOV Instruction

« Data can be moved among all registers but data cannot be
moved directly into the segment registers (CS,DS,ES,SS).

— Toload as such, first load a value into a non-segment register and then
move it to the segment register
MOV AX,2345h
MOV DS,AX

« Moving a value that is too large into a register will cause an

error _
MOV BL,7F2h ; illegal

MOV AX,2FE456h ; illegal

 If avalue less than than FFh is moved into a 16 bit register. The
rest of the bits are assumed to be all zeros.

MOV BX,5 ; BX = 0005 with BH =00 and BL =05

20

MOV Instruction

« MOV AX,58FCH
« MOV DX,6678H
e MOV SI1,924BH
e MOV BP,2459H
e MOV DS,2341H
« MOV CX,8876H
e MOV CS,3F47H
e MOV BH,99H

2 % 2 x 2 2 2 2

21

ADD Instruction

ADD destination,source

The ADD Iinstruction tells the CPU to add the source and destination

operands and put out the results in the destination

DESTINATION = DESTINATION + SOURCE

MOV AL,25H

MOV BL,34h
ADD AL,BL ; (AL should read 59h once the instruction is executed)

MOV DH,25H

ADD DH,34h ; (AL should read 59h once the instruction is executed)

Immediate operand

22

Origin and Definition of a Segment

A segment is an area of memory that includes up to 64
Kbytes and begins on an address divisible by 16 (such
an address ends with an hex digit Oh or 0000Db)

— 8085 could address 64Kbytes 16 address lines

e |nthe 8085, 64 K is for code, data, and stack

* Inthe 8086/88, 64 K is assigned to each category
— Code segment
— Data segment
— Stack Segment
— Extra Segment

23

Advantages of Segmented Memory

 One program can work on several different sets of data. This is done
by reloading register DS to a new value.

 Programs that reference logical addresses can be loaded and run
anywhere in the memory: relocatable

« Segmented memory introduces extra complexity in both hardware in
that memory addresses require two registers.

 They also require complexity in software in that programs are limited
to the segment size

 Programs greater than 64 KB can be run on 8086 but the software
needed is more complex as it must switch to a new segment.

* Protection among segments is provided.

24

Segment Registers

Data
segment

Code segment (CS)

|B3FF &

Code
segment

Data segment (DS)

Stack segment (SS)

5D27 -

Extra segment (ES)
52B9

FFFFF
EFFFF

E0000

C3FEF

B3FF0O

6D26F
f;;Ck“ 62BSF
men
5D270 }E’“m
segment
52890

00000

25

Logical and Physical Addresses

Addresses within a segment can range from address 0 to address
FFFFh. This corresponds to the 64Kbyte length of the segment
called an offset

An address within a segment logical address

Ex. Logical address 0005h in the code segment actually
corresponds to BSFFOh + 5 = B3FF5h. Example 1

15 0 Segment base value: 1234h
Offset: 0022h

12340h
4+ 0022h

19 5 0 | | |
12362h is the physical 20 bit address

Two different logical addresses may
correspond to the same physical
address.

ADDER D470hin ES 2D90h in SS

i ES:D470h SS:2D90h
26

Example

oIf DS=7FA2H and the offset is 438EH
a) Calculate the physical address

/FA20 + 438E = 83DAE

b) calculate the lower range

/FA20 + 0000 = 7FA2

c) Calculate the upper range of the

7FA20 + FFFF = 8FA1

d) Show the logical Address

/FA2:438E

mazidi

SFALF

83DAE

TFA20

>FFFF

27

Example

Question:
Assume DS=578C. To access a Data in 67F66 what should we do?
» 67F66
? 6/8BF
|
|
|
|
DS=578C capability :
|
change !
DS '578C0
To any value
between

57F7h - 67F6h

28

Code Segment

e To execute a program, the 8086 fetches the instructions
(opcodes and operands) from the code segment

 The logical address is in the form CS:IP

e Example: If CS = 24F6h and IP = 634Ah, show
 The logical address
 The offset address
and calculate
* The physical address
e The lower range
e The upper range

29

Logical Address vs Physical Address in the CS

CS:IP Machine Mnemonics
Language

1132:0100 BO57 MOV AL,57h
1132:0102 B686 MOV DH,86h
1132:0104 B272 MOV DL,72h
1132:0106 89D1 MOV CX,DX
1132:0108 88C7 MOV BH,AL
1132:010A B39F MOV BL,9F
1132:010C B420 MOV AH,20h
1132:010E 01DO0 ADD AX,DX
1132:0110 01D9 ADD CX,BX
1132:0112 05351F ADD AX, 1F35h

e Show how the code resides physically in the memory
30

Data Segment

Assume that a program is written to add 5 bytes of data
25h,12h,15h,1Fh, and 2Bh.

One way to do it
MOV AL,00h
ADD AL, 25h
ADD AL, 12h
ADD AL,15h
ADD AL,1Fh
ADD AL,2Bh

Data and code are mixed in the instructions here

The problem with it is if the data changes, the code must
be searched for every place the data is included and
data retyped.

It is a good idea then to set aside an area of memory
strictly for data

31

Data Segment

The data is first placed in the memory locations
DS:0200 = 25h
DS:0201 = 12h
DS:0202 = 15h
DS:0203 = 1Fh
DS:0204 = 2Bh

Then the program is written as
MOV AL,0
ADD AL,[0200] ; bracket means add the contents of DS:0200 to AL
ADD AL,[0201]
ADD AL,[0202]
ADD AL,[0203]
ADD AL,[0204]

If the data is stored at a different offset address, say 450 h, the
program need to be rewritten

32

Data Segment

 The term pointer is used for a register holding an offset address

« Use BX as a pointer
MOV AL,0
MOV BX,0200h
ADD AL,[BX]
INC BX
ADD AL,[BX]
INC BX
ADD AL,[BX]
INC BX
ADD AL,[BX]
INC BX
ADD AL,[BX]

» |f the offset address of data is to be changed, only one
Instructions will need to be modified

33

16 bit Segment Register Assignments

Type of Default Alternate Offset
Memory Segment Segment

Reference

Instruction Fetch | CS none IP

Stack SS none SP,BP
Operations

General Data DS CS,ES,SS BX, address
String Source DS CS,ES,SS Sl, DI, address
String ES None DI

Destination

Brey

34

Little Endian Convention

“Little Endian” means that the low-order byte of the number
IS stored in memory at the lowest address, and the high-
order byte at the highest address. (The little end comes
first.)

Intel uses Little Endian Convention.

For example, a 4 byte Longint

Byte3 | Byte2 | Byte1 |ByteO will be arranged in memory

as follows: * Adobe Photoshop -- Big Endian
Base Address+0 Byte0 « BMP (Windows and OS/2 Bitmaps) — little Endian
Base Address+1 Byte1 * GIF -- Little Endian
Base Address+2 Byte2 IMG (GEM Raster) -- Big Endian
Base Address+3 Byte3 » JPEG - Big Endian
ENDIAN TYPE B.B.B.B.= 0XAABBCCDD SAMPLE
MICROPROCESSORS
Little-Endian aa bb cc dd Intel x86, Digital (VAX,
Alpha)
Big-Endian dd cc bb aa Sun, HP, IEM RS6000, SGI,

TJava” 35

Computer Operating Systems

 What happens when the computer is first turned on?
e MS-DOS

A startup program in the BIOS (Basic Input Output System) is
executed

This program in turn accesses the master boot record on the
floppy or hard disk drive

A loader then transfers the system files |[0.SYS
10.SYS calls MSDOS.SYS. MS-DOS.SYS is basically the kernel of the
operating system.

After initializing, MS-DOS.SYS then calls the command interpreter
COMMAND.COM which is loaded into memory. This puts the
DOS prompt on the screen that gives the user access to DOS’s
built-in commands like DIR, COPY, VER.

36

Memory Map of a PC

The 640 K Barrier
DOS was designed to run
on the original IBM PC
8088 microprocessor,
1Mbytes of main memory

IBM divided this 1Mb
address space into specific
blocks
640 K of RAM (user
RAM)
384 K reserved for
ROM functions (control
programs for the video

sy 1bArmA hard Aviy A

E0000H
Upper memory

BIOS ROM

Not used

block

C3000H

CO000H

ADOO0OH

Conventional
memory

Y O0000H

Hard drive ROM

Not used

Display buffer

User memory

COMMAND.COM

DOSs

384K special memor

MS-DOS Functions and BIOS Services

BIOS: usually stored in ROM
— tells the CPU what to do at startup

— these routines provide access to the peripheral devices of the PC,
such as the keyboard, video, printer, and disk

— To test all the devices connected to the PC and alert if error

e Access to the BIOS is done through the software interrupt
Instruction Int n

 For example, the BIOS keyboard services are accessed
using the instruction INT 16h

* In addition to BIOS services, DOS also provides higher
level functions
— INT 21h
— More details later

38

More About RAM

« Memory management is one of the most important
functions of the DOS operating systems and should be
left to DOS

 Therefore, we do not assign any values for the
DS,CS,SS reqisters; this is the job of DOS

e Itis very important to remember that

— The DS,CS, and DS values we will experiment will be different
than those used by the textbook; do not worry

39

Flag (Status) Register

15 Flags,, Flags, 0

o Six of the flags are status indicators reflecting properties
of the last arithmetic or logical instruction.

 For example, if register AL = 7Fh and the instruction
ADD AL,1 is executed then the following happen
— AL =80h
— CF = 0; there is no carry out of bit 7
— PF = 0; 80h has an odd number of ones
— AF =1, there is a carry out of bit 3 into bit 4
— ZF = 0; the result is not zero
— SF =1, bit seven is one
— OF =1, the sign bit has changed

e (Can be used to transfer program control to a new
memory location
ADD AL,1
JNZ 0100h

40

Example

 Show how the flag register is
affected by

— MOV AX, 34F5h
— ADD AX,95EBh Aux carry

A

0011 0100 1111 0101 Direction flag
1001 0101 1110 1011

4

1100 1010 1110 0000 e carry
interrupt

overflow 3!9N parity

in=34F5 BA=-HHHH CAi-HH88 Di-AAAE SP=FFEE BP-HHHH SI-BHHA DI-=-0648
DS =HB24 ES=HB24 S55=HB24 CS5=HBZ4 IP=1843 HU UP EI PL HZ HA PO NC
HB24:1883 BASEBY?% ADD AX.95EB

t

ii=CAEA BaA=-8008 CX-0800 Di-A88B0 SP-FFEE BP-8088 3I1-8808 DI-080008
DE=AB24 ES=HB24 £55=AB24 CS5=AB24 IP=1806& HU UP EI NG HNZ AC PO NC
HB24:1806 23 ACHG Bd . AR

TF, IF, and DF

 Three of the flags can be set or reset directly by the programmer

ands are used to control the operation of the microprocessor, these
are TF, IF, and DF.

 When TF (Trap Flag) is set, control is passed to special address
after each instruction is executed. Normally a program to display all
the registers and flags is stored there. Single-stepping mode.

 When IF (Interrupt Flag) is set, external interrupt requests on the
8086’s interrupt line INTR is enabled.

— For example a printer may spend several seconds printing a page of
text from its internal buffer

— When it is ready for new data, the printer control circuit drives the
8086’s INTR input line

— The processor then suspends whatever it is doing and begins running
the printer interrupt service routine (ISR)

— When the routine has finished via a IRET (interrupt return) instruction
control is transferred back to the original instruction in the main program
that was executing when the interrupt occurred

— Hardware and software interrupts

 DF (Direction Flag) is used with block move instructions (more later).
— DF =1 then the block memory pointer will automatically decrement
— DF =0, then the block memory pointer will automatically increment

42

Memory Address Space and Organization

048575
By 1 Word 524287
Byte 1048574

\{'\
‘/\

e Word

Double Word
Aligned Word
Misaligned Word

Byte 7
Byte 6
Byte 5
Byte 4
Byte 3
Byte 2

— Word 3

- Word 2

— Word 1

Byte 1
Byte O

— Word O

43

Even addressed and odd-addressed banks

Even Odd
bank bank
1048574 1048575
8 9
6 7 8086 Byte 7
& 5 read 2 Byte 6 Word starting at
2 g 8086 Byte 5 an odd address
dl
0 1 e Byte 4

16-bit data word to 8086

Dedicated, Reserved and General Purpose Memory

*Some address locations have dedicated functions and should not be used as
general memory for storage of data or instructions of a program

System Area

TPA
Transient
Program

Area

FFFFF

FO000
e

BFFFF

A0000
9FFFF

1 MB

Brey 19
Mazidi 32

00000H

BIOS System ROM (Dedicated)

Video & H/D Controller BIOS ROM
(Dedicated)

Video RAM (128 K)

FREE TPA

1/0.SYS--COMMAND.COM-- MSDOS

DOS + BIOS R/W Area

User Def Int. Pointers (Reserved)

Interrupt Vectors (Dedicated)

\

Oh

384 K

640 K

45

The Stack

 The stack is used for temporary storage of information such as data
or addresses; for instance when a call is executed the 8088
automatically pushes the current value of CS and IP onto the stack.

» Other registers can also be pushed

* Near the end of the subroutine, pop instructions can be used to pop
values back from the stack into the corresponding registers

PUSH POP End of

SS:0000h stack

Top of
SSSP stack

Bottom of

y

Example for PUSH

Given

— SS =0105h

— SP =0008h

— AX =1234h

— What is the outcome of the PUSH AX instruction?
Agos = 01050 + FFFEh = 1104h

Aros- 01050 + 0008h = 1058h

Decrement the SP by 2 and write AX into the word location 1056h.

SP 00h 06h

SS:0006 1056h AL

SS:0007 1057h Aw

$5:0008 1058h__, -

Example for POP

What is the outcome of the following

POP AX
POP BX

— if originally 1058h contained AABBh?
Read into the specified register from the stack and
Increment the stack pointer for each POP operation

At the first POP
— AX =1234h SP =0008h

At the second POP
— BX = AABBh SP = 000Ah

48

Addressing Modes

When the 8088 executes an instruction, it performs the specified function
on data
These data, called operands,
— May be a part of the instruction
— May reside in one of the internal registers of the microprocessor
— May be stored at an address in memory
Register Addressing Mode
— MOV AX, BX
— MOV ES,AX
— MOV AL,BH

Immediate Addressing Mode
— MOV AL,15h
— MOV AX,2550h
— MOV CX,625

49

Direct Addressing Mode

Address Memory
MOV CX, [address] ol
01000 88
01001 OE
8088 01002 34
MPU 01003 12
0000 i 01004 XX
0100 =
0200 2
ss
ES
AX
BX
02000 XX
BEED Cx 02004 XX
DX '
02003 FF
sp
BP)
03234 ED
sl 03235 BE
DI

Instruction

MOV CX, [1234H]

Next instruction

Example:
MOV AL,[03]

AL=?

Source operand

50

Register Indirect Addressing Mode

MOV AX,

S I Address Memory
content
| 01000 8B
01001 04
8088 01002 XX
MPU
0000 L
0100 &
0200 =
SS
ES 02000 XX
02001 XX
BEED AX
BX
CcX)
= 03234 ED
DX 03235 BE
SP
BP
1234 =L
DI

Instruction

MOV AX,[SI]

Next instruction

Source operand

o1

Example for Register Indirect Addressing

e Assume that DS=1120, SI=2498 and AX=17FE show the memory
locations after the execution of:

MOV [SI],AX

DS (Shifted Left) + SI = 13698.
With little endian convention:
Low address 13698 - FE
High Address 13699 - 17

52

Based-Relative Addressing Mode

MOV AH, [200y

ssep] +1234h

BX

» 3AH

AX

DS

1234

53

Indexed Relative Addressing Mode

MOV AH, [$'] + 1234h

8088
MPU
Py 1P
0100 &S
0200 =i
ss
ES
XX xx | Ax
BX
cx
DX
sP
BP
5000 SI
DI

Example: What is the physical address MOV [DI-8],BL if DS=200 & DI=30h ?
DS:200 shift left once 2000 + DI + -8 = 2028

01000
01001
01002
01003
01004

02000
02001

05234

content

8A
84
34
12
XX

XX
xX

BE

MOV AL, [SI] +1234H

Next instruction

Source operand

54

Based-Indexed Relative Addressing Mode

 Based Relative + Indexed Relative
 We must calculate the PA (physical address)

PA

CS
SS BX| |SI 8 bit displacement
DS BP | + DI 16 bit displacement
ES
~
MOV AH,[BP+SI+29] The
register
MOV AH,[SI+29+BP] > order does
not matter
MOV AH,[SI][BP]+29

/
55

Based-Indexed Addressing Mode

2 base + index +

0618 1

placement

dressing mode can
used to access a
rticular element in a
rticular record of an

MOV BX, 0600h s B
MOV SI, 0010h ; 4 records, 4 elements each.
MOV AL, [BX + Sl + 3] o6
OR T —
MOV BX, 0600h]
MOV AX, 004h ; -
MOV CX,04; | 000
MUL CX
MOV SI, AX

MOV AL, [BX + Sl + 3]

56

Summary of the addressing modes

[BP][SI or DI]+disp

ressing Mode peran efault Segmen
Register Reg None
Immediate Data None
Direct [offset] DS
Register Indirect | [BX] DS
[SI] DS
[DI] DS
Based Relative [BX]+disp DS
[BP]+disp SS
Indexed Relative | [Dl]+disp DS
[SI]+disp DS
Based Indexed [BX][SI or DI]+disp | DS
Relative SS

57

16 bit Segment Register Assignments

Type of Default Alternate Offset
Memory Segment Segment

Reference

Instruction Fetch | CS none P

Stack SS none SP,BP
Operations

General Data DS CS,ES,SS BX, address
String Source DS CS,ES,SS Sl, DI, address
String ES None DI

Destination

Brey

58

Segment override

Registers

Offset Reqister | IP SI,DI,BX SI,DIL,BX SP,BP
Instruction Examples Override Segment Used | Default Segment
MOV AX,CS:[BP] CS:BP SS:BP

MOV DX,SS:[Sl] SS:Sl DS:SI

MOV AX,DS:[BP] DS:BP SS:BP

MOV CX,ES:[BX]+12 ES:BX+12 DS:BX+12

MOV SS:[BX][DI]+32,AX | SS:BX+DI+32 DS:BX+DI+32

59

Example for default segments

The following registers are used as offsets. Assuming that the
default segment used to get the logical address, give the segment
register associated?

BP Db)DI c)IP d)SI, e)SP, f)BX

Show the contents of the related memory locations after the
execution of this instruction

MOV [BP][SI]+10,DX

If DS=2000, SS=3000,CS=1000,S1=4000,BP=7000,DX=1299 (all
hex)

S$S(0)=30000
30000+4000+7000+10=3B010

60

Assembly Language

There is a one-to-one relationship between assembly and machine
language instructions

What is found is that a compiled machine code implementation of a

program written in a high-level language results in inefficient code

— More machine language instructions than an assembled version of an
equivalent handwritten assembly language program

Two key benefits of assembly language programming
— It takes up less memory
— It executes much faster

61

Languages in terms of applications

One of the most beneficial uses of assembly language programming
IS real-time applications.

Real time means the task required by the application must be
completed before any other input to the program that will alter its
operation can occur

For example the device service routine which controls the operation
of the floppy disk drive is a good example that is usually written in
assembly language

Assembly language not only good for controlling hardware devices
but also performing pure software operations

— searching through a large table of data for a special string of characters
— Code translation from ASCII to EBCDIC
— Table sort routines
— Mathematical routines
Assembly language: perform real-time operations

High-level languages: Those operations mostly not critical in time.

62

Converting Assembly Language
Instructions to Machine Code

OPCODE

D

W

MOD

REG

R/M

\—

N\

V

e

* An instruction can be coded with 1 to 6 bytes
e Byte 1 contains three kinds of information:

— Opcode field (6 bits) specifies the operation such as add, subtract, or move
— Regqister Direction Bit (D bit)
o Tells the register operand in REG field in byte 2 is source or destination operand

— 1:Data flow to the REG field from R/M
— 0: Data flow from the REG field to the R/M

— Data Size Bit (W bit)

» Specifies whether the operation will be performed on 8-bit or 16-bit data

— 0: 8 bits
— 1: 16 bits

e Byte 2 has two fields:

— Mode field (MOD) — 2 bits

— Regqister field (REG) - 3 bits

— Register/memory field (R/M field) — 2 bits

63

Continued

e REG field is used to identify the register for the first operand

REG W=0 W=1
000 AL AX
001 CL CX
010 DL DX
011 BL BX
100 AH SP
101 CH BP
110 DH Sl

111 BH DI

Continued

o 2-bit MOD field and 3-bit R/M field together specify the second
operand

CODE EXPLANATION
00 Memory Mode, no displacement
follows*
01 Memory Mode, 8-bit

displacement follows

10 Memory Mode, 16-bit
displacement follows

1 Register Mode (no
displacement)

*Except when R/M =110, then 16-bit
displacement follows

(@)

MOD =11 EFFECTIVE ADDRESS CALCULATION

R/M W=0 W=1 R/M MOD =00 MOD =01 MOD=10
| 000 AL AX 000 | (BX)+(Sh (BX)+(S1)+ D8 (BX)+(Sl) + D16

001 CL CX 001 | (BX)+(DI) ~ (BX)+(DI)+ D8 (BX)+(DI)+ D16

010 DL DX 010 | (BP)+(SI) (BP)+(Sl)+ D8 (BP) +(SI)+ D16

011 BL BX 011 | (BP)+(DI) (BP)+(DI)+ D8 (BP)+(DI)+ D16

100 AH SP 100 | (SY) (Sl)+ D8 (Sh+ D16

101 CH BP 101 | (DY) (DI) + D8 (DI)+ D16

110 DH Sl 110 | DIRECT ADDRESS (BP)+ D8 (BP)+D16

1M BH DI 111 | (BX) (BX)+ D8 (BX)+ D16

(b)

Examples

MOV BL,AL
Opcode for MOV = 100010

We’'ll encode AL so

— D=0 (AL source operand)
W bit = 0 (8-bits)
MOD = 11 (register mode)
REG = 000 (code for AL)

R/M =011
OPCODE D |W| MOD | REG | RM
100010 0 0 11 000 011

MOV BL,AL => 10001000 11000011 =88 C3h
ADD AX,[SI] => 00000011 00000100 =03 04 h

ADD [BX][DI] + 1234h, AX => 00000001 10000001 __h
=> 01813412h

Software

The sequence of commands used to tell a microcomputer what to do is

called a program
Each command in a program is called an instruction

8088 understands and performs operations for 117 basic instructions

The native language of the IBM PC is the machine language of the
8088

A program written in machine code is referred to as machine code

In 8088 assembly language, each of the operations is described by
alphanumeric symbols instead of just Os or 1s.

ADD AX, BX

e S

Opcode Source operand

Destination operand

67

Instructions

[LABEL:] MNEMONIC [OPERANDS] [; COMMENT]

N _/ I
R V
Address identifier T hi
Max 31 characters Instruction Does not generate any machine code

- indicates it opcode
generating instruction

Ex. START: MOV AX,BX ;copy BX into AX

68

DEBUG program instruction set (page 825 mzd)

* Debug instructions

 List of commands
— a Assemble [address] you can type in code this way
— crange address ; compare ¢ 100 105 200
— d[range] ; Dump d 150 15A
— e address [list] ; Enter e 100
— f Fill range list F 100 500 *°
— g Go [=address] addresses runs the program
— h Value1 ValueZ2 : addition and subtraction H 1A 10
— i Ilnput port | 3F8

— r Show & change registers Appears to show the same thing as t,
but doesn't cause any code to be executed.

— t Trace either from the starting address or current location.
— u UnAssemble

69

Some examples with debug

0100 mov ax,24b6
0103 mov di, 85c2
0106 mov dx,5f93
0109 mov sp,1236
010c push ax
010d push di

010e int 3

Display the stack contents after execution.
-D 1230 123F

70

Some examples with DEBUG

e 0100 mov al,9c
e 0102 mov dh,64
e 0104 add al,dh
e 0109int3

trace these three commands and observe the flags

» After the code has been entered with the A command

« Use CX to store data indicating number of bytes to save.
BX is the high word.

e Use N filename.com
e Then W command to write to file.
L loads this file.

71

Example

Copy the contents of a block of memory (16 bytes) starting at
location 20100h to another block of memory starting at 20120h

MOV AX,2000
MOV DS,AX
MOV SI, 100
MOV DI, 120
MOV CX, 10
MOV AH, [SI]
MOV [DI], AH
INC S

INC DI

DEC CX

INZ NXTPT

	Week 2The 80x86 Microprocessor Architecture
	Brief History of the 80x86 Family
	Brief History - Continued
	Evolution of Intel’s microprocessors
	Virtual 8086 Mode
	The 80286 and above - Modes of Operation
	Virtual Memory
	The 8086 and 8088
	Execution and Bus Interface Units
	Fetch and Execute Cycle
	Pipelined Architecture
	Nonpipelined vs pipelined architecture
	Registers of the 8086/80286 by Category
	General Purpose Registers
	Data Registers
	Pointer and Index Registers
	Computer Programming
	Edit, Assemble, Test, and Debug Cycle
	MOV Instruction
	MOV Instruction
	MOV Instruction
	ADD Instruction
	Origin and Definition of a Segment
	Advantages of Segmented Memory
	Segment Registers
	Logical and Physical Addresses
	Example
	Example
	Code Segment
	Logical Address vs Physical Address in the CS
	Data Segment
	Data Segment
	Data Segment
	16 bit Segment Register Assignments
	Little Endian Convention
	Computer Operating Systems
	Memory Map of a PC
	MS-DOS Functions and BIOS Services
	More About RAM
	Flag (Status) Register
	Example
	TF, IF, and DF
	Memory Address Space and Organization
	Even addressed and odd-addressed banks
	Dedicated, Reserved and General Purpose Memory
	The Stack
	Example for PUSH
	Example for POP
	Addressing Modes
	Direct Addressing Mode
	Register Indirect Addressing Mode
	Example for Register Indirect Addressing
	Based-Relative Addressing Mode
	Indexed Relative Addressing Mode
	Based-Indexed Relative Addressing Mode
	Based-Indexed Addressing Mode
	Summary of the addressing modes
	16 bit Segment Register Assignments
	Segment override
	Example for default segments
	Assembly Language
	Languages in terms of applications
	Converting Assembly Language Instructions to Machine Code
	Continued
	Continued
	Examples
	Software
	Instructions
	DEBUG program instruction set (page 825 mzd)
	Some examples with debug
	Some examples with DEBUG
	Example

